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THE ASYMPTOTIC NORMALITY OF TWO TEST STATISTICS

ASSOCIATED WITH THE TWO-SAMPLE PROBLEM
by
Saul Blumenthal

0. Summary.
In this paper we prove the asymptotic normality of two statistics which

have been proposed to test the hypothesis that two samples come from the seme
parent populstion. One statistic is the number of runs of X's and Y's in the
combined ssuple of X's and Y's; the other is the sum of squares of "Si'l"
where s1 is the number of X's falling between the 152 and (1.-1)-'—'i laxgest Y's,
Both statistics haye been studied prev?!,usly, both lead to consistent tests,
and both were known to be asymptotically normal under the null distribution.
Here ve prove limiting normality under a fairly wide class of alternatives,
We also compare the limiting power of these tests. Our method, a study of
conditional moments, can also be used to prove 1imiting normality of

"combinatorial" statistics of greater generality than the “sum of squares"

statistic which we study in detail,

1. Introduction,

The purpose of this paper is to demonstrate the ssymptotic normality of
certain statistics which have been proposed for testing the "two sample'
problem, Chief among these are the Wald-Wolfowitz run statistic and a
statistic studied by Dixon [5]) and by Blum and Welss {1], Since previous
proofs of normality under the null hypothesis exist, the main contribution
here is the proof of normality under a fairly wide class of alternative
distributions. Using this result power can be computed for the tests in
question., A comparison of limiting powers for these tests is made in

Section 8.



Let xl.....x - and Yl....,‘ln be two sets of independent random variables,

the first set with common c.d.f, F(x) and the second set with common ¢.d.f.
G(x). We assume that both F(x) and G(x) are absolutely comtinuous, and have
continuous differentiable density functions £(x) and g(x), respectively.
Further, we must assume for the purpose of using a convergence theorem in
Section 3 (Theorem 3,2) that g(F'l(x»/t(F'l(x)) (08 x5 1) s bounded.
Whether this condition can be relaxed is open., For the puposes of proving
a result about asymptotic normality of sample spacings in Section 7, we need
to assume that g(?'l(x»lf(r'l(x)) (0§ x5 1) is also bounded awvay from zero,
By the symmetry of the problem and the arbitrariness of labeling X and Y,
these two conditions imply one another. Thus {f one can be relaxed, both
can be, We can note that if "truncated" tests are used, most distributions
will meet these conditions, however distributions commonly encountered fail
to meet these two conditions when x is near O or 1 or both,

We assume that (m/n) = v+r vhere N[ r —>0 as n increases. In the

sequel, we treat m/n as a constant r without loss of generality.

Let 2, = 671(0), 2, = 6"}(1), and 2, <...< Z_ be the values of the Y's

1

arranged in increasing order, For each i=l,...,n+l, let s1 be the number of

X's which lie in the interval [21-1’ zt]. All the statistics to be considered

can be expressed as functions of the s‘. Since the st are invariaani under

p;obabilicy transformations, we shall assume hereafter that f(x)=1 for 0 5 x & 1,

that G(x) assigns unit mass to [0, 1], that 0-1(0)80. G-l(l)nl and that g(x)
is bounded above and below (away from zero). This last assumption assures
the uniqueness of the inverse G'l(x) for all x in [0, 1].

We shall denote the difference, or sample spacing, z‘ - z1 1 by “t'

1”1..-..“"’1.

-2a

3 ——t



s s e e SIENTR

|, — [y sy

The atatistic proposed by Dixon is

o 1n+12 1n+1 ( \ n 1n+1 ( )
ne= L 8% =a=L §(S,«l)+~= = ~ L 8.(8,-1) +r.
n =1 i n =1 ivV1 n n =1 v

In Section 3, we study the distributions of "combinatorial' statistics

ntl §
of the form -3; z (ki). Clearly, V2 has the same limiting distribution as
i=1
2 n+l Si
r + y z 2 ). Further, it is obvious that as test statistics, v2 and
i=1
n+tl 8

1 z (2") will have the same properties. One could, in fact, comnsider the

® a1
1 n+l S1
possibility of usipg 5 Lz (k) as a test statistic for k other than 2, Con-
i=1

sistency or lack thereof can be established easily using the convergence
theorem of Blum and Weiss [1], and power could be computed using the results
of our Section 3. We see no point in doing this here since in [1], V2 was
shown to have some desirable power properties and no similar propertias have
been established for other values of k. In Section 4, the power of the test
based on V2 is written down explicitly.

The run test is studied in Section 5 and its relation to the quantttiei

sl"“’sml is indicated there. This relation is exploited to prove the

limiting normality of the run statistic by obtaining the limiting normality
n+l

1
of a certain function of §,,...,5  ,, namely Y =z bo(si), where bo(x) =1

if x=0 and O otherwise,
The methods of proof in Sections 3 and 5 are similar and are justified

by the argument given in Section 2,
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It should be mentioned that tests for the one-sample test of fit which
are based on statistics analogous to the above mentioned ones were proposed
and studied by David (L], Kitabatake [8] and Okomoto [9], [10]. In the one-

sample case, the sample intervals are [F;I(iil), F;I(%)] (1=1,...,n) where

Fo(x) is the hypothesized distribution. The S1 are then the numbers of X's

in these intervals (now fixed instead of being random). Because of the strong

resemblance of the statistics, many of the computational schemes used by
Kitabatake and Okomoto can be used for the two-sample case (see Sections 3
and 5).

In a recent article, Wilks [15] considers another statistic based on

Sl....,S He also indicates the utility of the one-sample methods

n+l’

although he does nbt elaborate in much detail on how they are to be used.

2. General Approach,

In both proofs of normality (Sections 3 and 5) a conditional method of

moments is used to establish the asymptotic normality given the Yl.....Yn of

1
p ™ 2
a function u(sl,....sn+1). (In Section 3, H(sl.....sn) s - 121 s7 » and
1 n+l
in Section 5 it 48 = L B (S,) where 8 (x) = 1 if x=0 and O otherwise.)
n,q1 ° i o

This normality will be shown to hold for almost every sample sequence

YI'YZ"" . We now justify the particular method employed. Denote

n(sl,...,s

n+1) by un(s). Denote conditional expectation given Y,,...,Y as

En( +1Y) Our goal is to show that as n increases
JE(H (8)-E 1 (5)) 5
itn(H (S)-E H (S T2

We summarize our assumptions and result as

e

[ X}

P

-

—

g
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Theorem 2,1: If nn(s) and zn(un(s)m are as given above, if
\]'E[an(un(s)lv) -E a“(s)] considered as a function of (Yl....,‘tn) has a
limiting non-degenerate Normal distribution, N(O, cl) and 1if

p/2

(P'l)(P'3)-.-3olc2 if P is even

(2.2) P2 En{[lln(s) - (1 ()]} — {, 1f p s odd

vith probability one, (where c_ 1is some constant) then (2.1) is true with cme, 4,0,

2 2

Proof: We can rewrite the expectation in (2.1) as

i .1:\[H[xn(nn(s)|y) - EH (5)] . [eic\]'ﬁ(nn(s) - zn(an(s)|v))lY

n

(2.3)

The normaiity proof then consists of thowing that the random variable
t“c

1:4‘:‘1(un(s) - sn(un(s)lv) - 2
En[e Y] approaches e with probability one as

n increases, where <, is an appropriate constant, and of showing that

t2c
1
i E (H (8)]Y) - EH (S -
Ee tﬁ[ “( “( )l ) n( ) approaches e 2

as n increases. This
latter convergence follows easily from the L‘vy uniqueness theorem for charac-
teristic functions and from our normality assumption. Thus if we can show

the above convergence with probability one, because of the boundedness in
absolute value of the exponentials in the expectations in (2.3), it must be

that the limit as n increases of (2.3) is

t2c
2
- — 1t\]n[E (H_(8)]Y) - E H (8)]
(24) e 2 1a Ee ntn n ,
n —-» o
2
- E—(clﬂ:2
which is in turn (by the result noted above) e s and this is the

desired result. (In the cases which we shall consider, En(Hn(s)IY) is known

to have asymptotically a normal distribution from previous work (Weiss {1l]; Proschan

-5-



and thus we have part i
and Pyke [11]),0f our work done in advance.)

To show the convergence with probability one of ‘

i H (S) -E (K (8)|Y
(e tR(H,(8) - B (H (5)] ))]Y] we shall study in Sections 3 and 5 the be- !

havior of the moments zn{[Ji(un(s) - £ (1 (s)[Y)IP|Y} p=1,2,3,... and tn

[——

particular shall show that (2.2) holds.

[eS——

A series expansion (with error term) of the expression

.
e

e ( 1tﬁ(ﬂn(s) - zn(un(s)ln)
n e

|Y] shows that the result (2.2) is sufficient to

imply the desired convergence with probability one. This proves the thecorem |

and shows the direction we follow in the sequel.

U ‘
3. Normality of Combinatorial Statistics.
In this section, we shall consider the limiting distributions of statis- !
tics of the form .
1 5,(S,-1)...(S,~k) |, n+l S ’
k 1 M 545y 1 1 1
(3.1) H(s)=3 = o ==L (D).
i=1 * i=1

H:(S) has the following interpretation: Consider all (:) k-tuples (X1 ,....xik)
1

ls 11 <o & ik s m of the X's, and count the number of these such that all

ofx1 seee X

1 by

Although we shall carry out the details only for k=2, it will be seen that

fall in the same sample interval [ZJ_I, zj], J=1,...,n+1,

the method will suffice for any k, and in fact will suffice to show the limit-

k k
ing joint normality of any finite set (Hnl(s),...,unp(s)) of p of these

n+l
quantities, Noting that Hl(s) =1z s 2. r, it can then be seen that
n nL, i n !

-6-
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n+l
I the result obtained for u:(s) implies the limiting normality of % T 8:
: i=l
I since the latter is a linear combination of Hz(s). p § k. The same argument
1 n+l kl ntl k
shows that finite collections of the form, ( = I s1 seees = L 8 P )
"o Do !

have a limiting joint normal distribution.

For real numbers x,,...,x, such that 0 <x <1, (i=1,.0.,k), we define

k i
(3.2) tk(xl’“"xk) =1 if X ,.00,x, fall in the same sample interval
= 0 otherwise

. Note that implicitly tk(xl....,xk) is a function of Y ,...,Y as well as

X)reeesXp e Since the X's are independent, we would have that P[tk(xi .....Xi )
k

1
. n+l k th
= ll‘l] = z w1 where H1 is the length of the i— sample interval (based on
i=1

Y.,...,Y ). Note that we can write
1 n

(3.3) n:(s)- % £ e (X, ,eeeX

1 ‘k)

The sum & extends over all k-tuples (11,....1k) 154, <..<4 s m unless

1
otherwise stated, In the form (3.3), u:(s) looks deceptively like a "U statistic",
which it is not in the strictest sense. Thus we cannot use the theorems for

"U statistics” but must treat this soparately, Note that

n+l
(3.4) Bn(:k(xil.....xik)lv) = L W

k
i=1 L

Thus we have that

+1
(3.5) B, (H(3)|¥) -1z Bt (xil.....xik)m -1z (:El w‘;_)

(M n+t k n+l
k k k-1 r k
" (151 UL 3 (151 ") * O

-7-



where Jn 8, approaches O stochastically as n increases (see (3.21)).
The limiting standard normality of

n+l 1

NCC Y f g% (x)dx)
(3.6) = 0

1 1
([(2K)! - 2k(k!)?] f gl (x)ax - [(k-1) k! f gl (x)ax )2
0 0

has been demonstrated by Weiss [14], and again by Proschan and Pyke [11].

In view of Theorem 2.1, it remains to study the conditional moments of

n+l
)
i=1

(3.1 WAl Ez (g x ... -
1 k
in order to verify (2.2).

Counting the various terms involved in the moments becomes very complicated,
and to avoid excessive notational troubles, we shall study in detail only the
case k=2,

We shall show that

Theorem 3.1 Let :2(xi, xj) be defined by (3.2), and g(x) the density of

the Y's be bounded on {0, 1], then

n+1 0 P-1,3,5-00

(3.8) UmE [(=(c (X, X,) - £ w2))P|Y] =
. Y gt [(p-1)(p-3)...3.1)cP/2 pu2 ...

with probability one, where £ extends over all pairs (1 < j). The constant ¢

is given by
1 1 1
c=r? [u/\ g'l(x)dx + 6r\/‘ g'a(x)dx - ht(\/\ 3-1(x)dx)2].
0 0 (o]
Proof:

Our methods of counting in the proof of (3.8) are based on those

-8-
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used by Daniels {3), Hoeffding [7], and Okamoto [10], chiefly the last,

Let
n+l

2
We are studying

(3.10) u, = B (a2

14
(Zvy(X s X,))P Y]
vhich can be written as

-p/2
(3.11) By = 0 > nn[va(xil. le) cee va(xip. xjp)lvl

vhere summation is extended over all sets of pairs (11, jl),...,(ip, jp),

1s 1 < ysm, k=1l,..:,p. Following Okamoto, 1let d denote the number of
different integers among

(3.12) s Jpieenily 3pe
We now divide the p pairs of subscripts into e classes. Pairs of subscripts
in the same class will be "linked" in the sense used by Daniels (3], and pairs
not in the same class will not be "linked", The classes of "linked" pairs
are equivalence classes and the members can be found as follows. The pairs
(1k,jk) and (1l.'jt) are said to be linked neighbors if one or more of the

equations i =i,; 1 =j,, jk"il' Jk'kl, are satisfied. The pairs (i ) and

ki
(i‘,jt) are linked 1if either they are linked neighbors or there is a pair
(i.a,ja) 80 that either (1k,jk) and (1a,ja) are linked neighbors and (ia,ja)
and (1,‘_,5&) are linked or (1&'-1&) and (ia,ja) are linked neighbors and (1a,ja)
and (ik, jk) are linked. This inductive definition uniquely determines the

sub-classification of the p pairs of subscripts.

We then write

(3.13) P2
. b= A »
P oaul dup ¢

wvhere

(3.14) A, = a-P/2 z(c.d)gn[va(xil.le) ver va(xip,xjp)lvl.

-9-



Z(O.d).:‘nding for summation over all sets of pairs (il,jl),....(ip,jp) such
that the number of different integers is d and the number of equivalence classes is !
e, We shall now investigate

(3.15) ‘n[*e(le' le) ves va(xip. XJP)IY]

in A‘ Let e equivalence classes consist of PyreseP, pairg. Obviously,

dl

To evaluate (3.15), we can assume without loss of generalify that these classes

are (we put the subscripts in parentheses after the i's and j§'s to simplify

typing)

i
I
(3.16) P =Py +eert D, i
1
1

(3.16.1)  1(1),3(1)5...54(py )5 3(py)s
(3.16.2)  1(p;+1),3(py+1)s .0 uit(py+p,), 3(Ry4p,) oo
(3.16.e) (P tpotecstpy 1 +1)23(PytPotee 4P, 1 +1)ieeeii(p),3(p).

By independence of the X's, we have B“('IY) in (3.15) distributed to e

classes, and (3.15) becomes the product of e expectations

(317.1) B L¥y(R, (qy0%y(q)) - va(xi(Pl).xj(pl))IYI.

(3.17.2) zn[va(xi(p1+1).xj(p1+1)) oo ve(xi(p1+p2).xj(p1+P2))|Y] ces

(3:17.0) LWy (pup r1) Fy(ppyr1)) +o0 ¥ Fa()¥y(p)) 1Y)

Denoting by d8 the number of different integers in the class (3.16.g)

g=1,2,,..,¢ (d8 s PB) we have

(3.18) d = d1+d2+...+d. .

The conditional probability Pn('tY) that @ X's fall in the same interval is

n+l
21 H?, so that expanding the product in (3.17.g8), using the definition (3.9),
im

ve have that the expectation (3.17,8) 4s of the form

«]10=
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n+l d‘) (n+1 ds)(n+1 2) (n+1 d‘-l)‘n+1 ¥)
(3.19) (z W + a Z W Z W)+ a T v L
{ml i () (=1 i fel i 11 {ml i tel i

n+l d8 n+l e ntl ds.l n+l 2
' .°"'(1§1 ! )(1-2-1 U .12(151 " )(151 ¥

n+l d8-2 n+l 2 n+l 2 ps
+ 122(151 w, )(£EI "1) oout ‘dgpg(ifl wi) .

Clearly, the coefficients of the above polynomial, the a, 's depend on the

L}
d8 and pg. and not on n. We need not evaluate them specifically. At this
point, we call upon a result due to Weiss [13].

Theorem 3.2 (Weiss) Por each t & O, let Rn(t) be the proportion among

"1""'"n+1 which do not exceed t/n, and let
1
(3.20) R(t) = 1 f "8(x) g ()ax.,
(o}

Then if g(x) is bounded on [0,1],

(3.21) P{ lim sup |Rn(t) - R(t)| = 0) = 1,
n->o tx 0

Thus, we have

n
(3.22) o1 12 w‘: = (1+ %)f tadkn(t)
0

and
n+l ® 1 1

(3.23) ua o1 g H‘:-f taf 0°ts(x)ga(:c)dxdt-l‘(a+1)f g % (x)ex
0

n - o 1=1 0 0

with probability one.
Using this last result in (3.19), we see that with probability one, (3.19)
is of order O(n.(ds-l)). Thus, (3.17.8) is of the order in n O(n-(da-l)) w.p.l.
By (3.18), we have the order in n of (3,15) is w.p.l.
e

;1 - (dg-l) = e-d

alle



Since Z("d) in (3.14) contains O(md) terms of this magnitude, we have w.p.l,

(3.28) A, = 02 o(a?) 0(n®"?) = o(a®P/2),

ed
1f e > p/2, then from (3.16) there is at least one g such that psnl and
(3.17.g) vanishes because of (3.9) and (3.4t), whence (3.15) also vanishes so

that Av =0, We have proved so far that

d

0 1f e > p/2

(3.25) A_, =
ed ) omeP2) yopa if e 8 p/2

From (3.13) and (3.25) it follows that My = of1) w.p.l for odd p.

In the case when p is even, we need only consider Aed for esp/2 because of

(3.25), L.e.,
2p

(3.26) My = diz Ap/2,d = A (say) (w.p.l).

The reasoning which led to (3.25) shows that positive contributions to A are
made only when each p8-2, g=l,...,p/2. This means that each dg (8=1,¢4.,p/2)
has to be either 2 or 3. If d8=2' then by (3.23), n times (3.17.8) converges

with probability one to
1

(3.27) 1(g) = 2Jf g1 (x)ax
0

1f d8=3' we have n® times (3.17.g) converging with probability one to
1 1
(328) 1) =6 [ gPax - u( [ s Mean.
0 0

1f, q of the numbers dl,...,dp/2 are 2 and p/2-q are 3, then using (3,27)

and (3.28), we have

29) lm  aPT9E (v (X, , X, ) ... wo(X, , X, )|¥) = q p/2-q
(3.29) lm RUA ‘) jl) ¥, ( . Jp)l 1 = (1(8))%(11(8))

with probability one.

«l2-
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Combining (3.29) with (3.26), (3.14) and the remarks preceding (3.27),

we have

/2
(3.30) A= n3P/2 "zo a%(1(8))? (12(8))/2"% o(q) ¥(a, @)
q:

with probability one, where ¢(q) is the number of ways of classifying p pairs
(11,j1),...,(1p,jp) into p/2 sets, q of which have 2 different subscripts,

and p/2-q have 3 different subscripts, Clearly,

/2 p/2 "7‘L'—‘!
(3:31) 0la) = CAG-DE-3) .. 31 = CF) Zpbie

By ¥(n, q), we represent the number of ways of choosing 11,31;12,12;...;ip,jp ’

18 18 < js $ m so that 18318*'1; 18-184'1’ 8=1,3,5,9,...,2q-1; and so that one

1=i 1 j =1
of the equalities { L g

g 1} is satisfied for g=2q+l, 2q+3,...,p-1.
i =j
8

gel  Jg™dgn
We can see that y(n, q) is given by
(3.32)  ¥(n, @) = (D). ("EFR)("29) 2(me2q-2) (*BD) 2(n-2q-5) ...

(m+q-3p/2+1)

= p 2q-3) =(2 - 2 1-
AR (m-29-3) =(2"9 A (m-1) "9 )jv-ro (1- )
Using (3.31) and (3.32) 1in (3.30), we have

' /2
(339 4= S «P/2 :Eog;)q(vf)umw(n(s»m-q + o(1)

with probability one (recalling that m=rn), Clearly, (3.33) reduces to the

simple expression
1 1 1
' P -1 . -2 -1 \P/2
(a3 S v {[ 5 xex 6:[ : (x)dx-m[ & ooe?)

This completes the prcof of Theorem 3.1.

-13-



4, Asymptotic Distribution of V2 Statistic.

We can combine the results (3.5), (3.6), and Theorem 3.1 to infer the

following
Theorem 4,1 Under the assumptions of Theorems 3,1 and 7.1, the distri-
1 n+l Si /\1 1
bution of o ozo(,) - xR g (x)dx)
" 2 \é
(4.1) I T 1 1
ot [ 57 den s 6f aZen + 22 g 00ex - (o) [ g Hmen®)?
(o] 0 0 o]
approaches the standard normal distribution as n increases.
1 ntl §
Since V2 = r + 2(; z (2 }), we can compute the power of tests based on
i=1

V2 using the theorem above. A test of the hypothesis that G(x) = F(x) (the
uniform distribution) (O s x s 1) based on V2 would reject this hypothesis
[ ]

whenever V2 exceeds Cn(a) where @ is the desired level of significance., We

shall use the following standard notation:
- -]
2
(4.2) o(v) = (X )f e (t572)y,
JZW v

and
K(a) 1s the number such that o(K(a))= a

Then the above theorem shows that for large n, Cn(a) is approximately equal to

(4.3) ( = YINn(1+2r) + 2(r+1)K(a)].
NS

n

5. Limiting Conditional Normality of the Run Statistic.

In this section, we consider the limiting conditional distribution of

1

(5.1) Ho(sl,....sn+1) = =3 (the number of SyseeesS which equal zero)

n+l

We shall abbreviate Ho(sl""'sr 1) by H . Denote the number of runs of X's

=14

v—t ]

i
+

yod o) ogumd omwi peeemd e d
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and Y's in the combined ordered sample by Un. It is easily seen that the
number of runs of X's is the same as the number of cells containing at least

one X, which is (n+1)(1-ll°), and from the definition of U , we see that U
differs from twice the number of runs of X's by at most one, Formally, we hawe

(5.2)  |(u /n) - ((n+1)/m)(1-H)] ;;‘1.

From (5.2), we see that if Ho is asymptotically normal with mean u and
variance o2, Un/n will be asymptotically normal with mean 2(1-u) and variance
4o2. We shall now examine the distribution of H .

Since ve have
m
(5.3) P(s=0]¥,,....¥ ) = (1-4,)
vhere W, 1is the length of the 10 goacing, it follows that

n+l
(5.4) E (B]Y) -(U(w1)) B (1u)" .

n+l
It is easy to show that asymptotically(1/(n+l)) T (1-‘11)lll has the same
i=1

‘ n+l  -ntW n
distribution as(1l/(n+l)) L e . The asymptotic normality of the latter

i=1
can be demonstrated by the method employed by Weiss [14], or the generalizatien
of Proschan and Pyke [11] (see Section 7).
From Theorem 2,1 of Section 2, it follows that we need only consider the
limiting behavior of the conditional moments of Ft'(llo - Bn(HolY)). Using
the computational scheme which Kitabatake [8] employed to solve the one-sample

analogue of this problem, we shall prove the following

Theorem 5.1 Let H  be defined by (5.1) and let g(x) be bounded on {0,1], then

1f & =1,3,5,...
(5.5) 1lim xn[n‘la(uo - xn(Holv))‘|Y) = L2
n = (¢-1)(¢-3)...1C 1f L =2,4,6,...

~15-



with probability one. The constant C is given by

1 1 1

Proof:

Let J = (n+1)H°. Let V, = 1 if §, = 0, and O otherwise, Then,

n+l
(5.1 3, = = Vg
and
(5.8) B (v ]¥) = (10" .
Also,
(5.9) & ({0 - “2. (A - "1.)m
where

Jg') = 3,(3~1) ... (3 -8+1) 1f 28>0

J£O) = 1

and I stands for summation over all permutations (il,...,i.) of (n+l) integers

nP
s

such that 1 s ij s n+l, 1J*ik 1f 34k (J,k=1,2,...,n+l).

We note also that we can write (w.p.l)

Me

-r (nw1 )

8
m 1
(510) (14 =voom Wy )" = 0 3= (1- = (z, (ny )2 + 0(Z2)]

8
By the binomial expansion, we obtain

J
(5.11) B (™22 (2 .k (n |0)*3) -

-16-



J 3
- ntt2/2 B (0 =2 - B (B IO 3y - zn(nolv)]‘*llvl

“2/2 [ £ (- 1)] ("'*'1) E (( 0 )5+2'J|Y][Bn(H°|Y)]j
=0

t+l J
- b G g me

We can express J: in terms of factorial powers as

k
K ky g(k-q) ;(k-q)
(5.12) J_ = & (()B
° o 4 4 %
where Bin) is the Stirling number of order n and degree r. From (5.9) and

(5.12) we obtain that with probability one

(z+2 1)
(513) B (22 )2 |y) = 5 ¢ o 19

(&+1 1) J("J)
. (ua-)%(m-n Lo ( (__)_z_i__ ¥} + E_( "—T‘T 1¥) o(zy) .

To evaluate the terms on the right of (5.13), we use (5.9) and (5,10)

much computation, and (5.13) again to obtain

(-) (l—wi —eeom W »
(5.14) E I¥) = & 1 s
(n+1 P (n+1)
s 8

(2 (W, ) -e(Z (oW, ))
£ = L > ( z (oW, ))2 2 i !
nP, (n+1)® 2(“*1) 1 1y (n+1)®

s-1
.r(jf (o j)) n+l T -rjEI (nwtj)
iz 8 o) = {(2 =) 2 )

P, (n+1)® i=1 P, (n+1)

-17-



-2rnW -r L (“w )
-1 n+l i -
LA (2 s y( ¢ & s
=1 n+l
LI (n+1)*~2 i
8-2 .i
-3rnW -r L (nw )
+ gl-LNl-i‘! ( e ! e J=2 j
(n+1)2 P, , (ne1)®-2 )} I
s-1 I
{ n+1 (nw )2e "y - zl (n" )
ey —bor— (B : I‘
nl’._1 (1:\+1)'.r
-2y sz-l ( ‘%
- W ‘.
(W, 2. le I )
+ rnfo-l! ( ¢ 1 )
2(n+1)? oP (n+l) )
8-2
" n+1 (nu ) e-rnwi -r L (nw )
T T2(n+ ( ——_—i—_— ¥ (& = = J
nP'_a (n+1)'-2
-2rnW 'y
. 0 -r L (w
ol (5 ) Jr T Y
(1) sl n+l g
o, (n+1)®
-3raW,  -r .52 (nwi )
+ r.§--1gg--22 ( (nwil)z ¢ 1 © e !
3 z
2(n+1) ne, o (n+1)®"2 )}
8-2
P W - z:1 ()
+(1z_n+'1')’(“2° - : o(2
=1 L (t\-o-l)"'2 (E!)



o

-oril
ael Ty e ol (nﬂt)’ « ¢ Pl

1 o B (=2 Y)
[1-1“ o hl—";:[—_][u-(::):rl
orol
-2 1 n+l (aut) . i
RYCEICE. |n((:%1-)-.-;§ ) - {1 (e
: .-er‘*'t . J:-z - 0(1) iy J:-e m
MR S YL C U N

with probability one.
Using (5.14) on the right side of (5.13) with the appropriate values of

s and lumping together terms of order (;1,), ve obtain

L w1 M
(5.15) B (( 7)) j¥) = { 181 —_T
-roll
i -xoW
. n+l (nwi)a . J -3 1 el T4
o A N e PR L ATE ™ S LR wl A
-roW
ol 2L pel (o) e 1 . L
T S i et e LR A (5 Rl
with probability one.
Putting the result (5.15) into the expansion (5.11) we obtain
J
(5.16) & (272 2 - x [0 B|n)
t+l J O
- at*2/2 A EIL oL RTE Dl HILKCR N x ‘v

-19-



ooml (W) !
o By s NS

-l -2rnW
¢ J n+l TS Bl
e

-roly -rol
n+l (nﬂi) . 1 o+l i
-x( 1.*:1 — 2 +0(2)]) = \n [ 1;;1 e
-l .
r 0 (W)Fe i ts1f2, % 1
- B(T) 151 — T - B (H V] K (n (=1 - B8, Y)Y
-rnW -2rnW
J n+l 1 o+l i
+ (1) nn["“a( =1 " ‘n(“o“))‘m[ 1’.:.1 =T - 131 =T
(oW, ) " J
n+tl (nW,) e
-R B — 2oy - o(;;n-) £ (020 5 -k (1 [0) 1)
J ael T g e
+ (1) l!n(““a( -n%f - :n(uolY))&I“][ 151 ‘_MT B 1’.;1 : nti
-rnW
nHl (oW,) e i .
- r( 121 — g )# + 0(3)]

with probability one.

By an inductive argument, we obtain from (5.16) that w.p.l

«20-
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et e ey

-rol

. 2t n+l . 1
(5.17) B (n" (H -E (B [¥))""|¥) = (2¢-1)(2¢-3)...5.31 ( 1;;'.1 —
-roW
n+l 'amwi o+l (oW, ) e 2
I tmr-E ) eod)
and
[n"**(uo-xn(noly))"’“l|Y) = 0( 715 )
n
Using the Weiss convergence result, Theorem 3.2, we have
-rni
) n+l "mwi n+l '2"“"1 " n+l (nwi) e i 2]
.18 11 [ L z z
© ne> e dal ML g P i=1 n+l
1 2 ! 2
- -LH-" dx - P dx - x( -f-LL
[ THE(X _c/; 2r+g(x . (r+g(x))a

with probability one,

Taking limits in (5.17) and using (5.18) yields the desired result (5.5).

Thus Theorem 5.1 is proved.

6. Asymptotic Distribution of the Run Statistic.

Now we can put together the remark following (5.2) with the results of
Theorem 2.1, Theorem 5.1 and Theorem 7.1, to obtain explicitly the limiting

distribution of Un’ the number of runs in the combined sample of X's and Y's,

Theorem 6.1 Under the sssumptions of Theorems 5.1 and 7,1, the distribution of

(€ WGy, -2 f 1 ibfe
0
T T
gix;l g’fxz i l& 'S! i 3
2[‘[ s -2‘3‘[ (r+g(x)) f (Ns(x))a 4 (f (r+g(x))® &

w2la
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approaches the standard normal as n increases.

This is the same as the .expression derived by Wolfowits [16] who used a
somewhat controversial method of proof.

Using the theorem, we can set up a test of the hypothesis that G(x) = F(x)
(the uniform distribution) based on Un and having size of approximately & for
large n. Letting ¢(v) and K(cx) be defined by (4.2), the test based on U, will

reject the hypothesis of equality whenever U“/n is less than
(6.2) (2r/(14x))[1 - (K(a) NT#r/(14r) ¥n )].

7. Distributions of Functions of Sample Spacings.

In the proofs of normality in Sectioms 3 and 5 and in the computations of
power in Sections 4 and 6, we used the asymptotic normality of certain functions
of sample spacings. In particular, we used the

Theorem 7.1 If g(x) is bounded from above and below away from O on [0,1],

then as n increases, the marginal distributions of

1
1 n+l 1
\No (S ’:3'1 (nW, )% - 2[ G &)
2[2 L oax - ( 1 a2yt
[ £(x) { 80)
and
(7.2)

1
& ¢ z (14,)" f,+:, &)

[fé;%&’d’ f% f;%%k'azf s B fﬁ a

each approach the standard normal distribution.

~20a
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Proof:

In (14], Weiss announced the result (3.6) which specializes to (7.1).
The derivation given in [1k] holds strictly only for g(x) a step function.
When g(x) 1is continuous and has a continuous derivative, the results announced
by Proschan and Pyke [11], imply (7.1). The result (7.1) can be derived using
the method employed below to derive (7.2).

The result (7.2) also would follow from the results announced in [11].
The method used there is based on a series expansion of the functions in-
volved (Pyke-personal commnication). We shall illustrate the method by de-
riving (7.2) vhen g(x) has a bounded second derivative, and g(x) is bounded
away from zero,

To obtain (7.2), we observe first that (\rl'\/n)}.‘.(l-wi)nr has the same

nri

distribution as (\J57n)20- 1. Denote c(zt) - c(zi_l) by U, (i=1,.0.,0+1).
Note that
i
(7.3) c(zi) = L uj ixl,...,n+1,
)=1

Ul""'un+1 are distributed as sample spacings based on n observations from

a uniform distribution. Also, 1if Vl.....V are exponentially distributed

n+l

v v
-V 1 n+l
(f(v) = @ ), and if Tl\ = Vl +oeet Vn+1. then Ul’.“’utﬂ-l and '.t:’ooo’-T;—

have the same joint distribution.

By the mean value theorem,
(7.8) U, = g(B W, = g0 AW, + (8(2,) - s67 RN, (2, <Z<2)).

Thus,

Wy o= U /ee”l(3) + W (ss7H (D) - ()M 07 G
(1.5) = v, /6" d) + v (s67 () - g(2))) a2 R
+w2(ge(d) - 8(2))21e% D).

-23-



Also,
(1.6) 8(z,) - 674D = (6(2))- b & 0], 1
n
- (6(z)) - 6(z)) & 00| &
n
+ 6z - Y2 & el Looca,).
Note that .
I L a6 x) =2 gu)| -1 ) 1 .
(1.7) 2 86 (x)) (;; ) |ngl) Tt

We shall denote gc'l(%) by g, and -g; g(u) u-G'l(x) by gi.

mU,/

oW 1 81

! around (Q’n‘/n)}:c-

series with remainder term based on the second derivative, using (7.5), (7.6)

and (7.7):

Now we shall expand (\[n/n)Ce in a Taylor

- -raU. / ' —
(7.8) %20 ™ = jnit.(o w018y + r-—S;— (c(zi)- ;’;—)(nui)c T8y )
&

[y , R 2 -1 R
fENE g (ao)e PR %‘ (o(z,) - o(z,)) + 2 = ix)“'e (6(2,) )%
8; 8

-" 2 -ral, /g - / '19 ~
-r.ﬁt_(igéi)l_(nwi)z[ﬁ—;—iz-romuiw ()] (§<e<c(z1)).
&

We now observe that of the three summations on the right side of (7.8), the

latter two converge stochastically to zero, This observation follows from

~rnl
the assumptions about g(x) and its derivatives, the fact that %l‘. (nui)kc L

~
1s uniformly bounded for all n, the fact that G(zi) - c(zi) < U, and the

«2ba
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Glivenko-Cantelli Lemsa which says that n 48 sup (c(zi)- ;1‘-) converges
i

stochastically to zero. (In the terms in question, (c(zi)- %) appears as a
square.) Using the Slutsky Proposition (Cramdr [2], p. 255), we can say that

-rnW
(\J#/n)e ! has the same limiting distribution as

v,/
(1.9 Mg P [y (g /8d) (62,)- B (au,)).

Using the remark following (7.3), we see that (7.9) has the same limiting
distribution as
V,/T g
(o) MEg TR 1) (6(z))- &) (av, /2 )]
31
where the V q ore independent exponential random varisbles (i=1,...,n+l), and
T =IV,. We nov examine separately each of the terms in (7.10). Expanding
-V, /

8
the first term around (\J5/n)8¢ I © we obtain

-rnV /T
(ray AEp e NEg "% (14(e/8)) ¥, (1- £))

-V, /g
+ X g (v /52 1 F)° o .

where V 1/Tn < Vi <V,. Noting that n%'b(l- -.;.‘—) approaches zero stochastically,
n
that Tn/n approaches unity stochastically, that

(1.12) 1-4 = (32 V- o

n

and the boundedness of xe” * again, and the fact that

-V, /g 1 2
(7.13) ;l‘-zsii-v!- '™ s f (—3;‘(3%—;&

-25.



as n increases, we can again use the Slutsky Proposition to conclude that

-rnvtl'rng1
(\n/n)E o has the same distribution as

-V /
7.14)  (\J®/n) £ ( 1’8 (v 1)
( \e/e) £ (o ' f <r+s(x))=

The second term in (7.10) is a little more complicated, but using (7.3)

i
to express (G(zi)- ;) as a function of V,,...,V_ ., and (7.12), and the

Glivenko-Cantelli Lemma and the fact that n i-& (1- %L) approsches zero
n

stochastically, along with the Slutsky Theorem, we conclude that the limiting

raV i/'rn

distribution of (\n/n) £ r(gilgi)(c(z )= = )(nvilrn) e is the same

as that of

n+l -rV‘./g1
(7.15) x(Jn/n) 181 (8;/83) v, e (1/n)jz:1 (vy-1)

n+l -xV. /g

- (v,-1) (un)z (jxn)(gj/gg)v e 17

Since
n+l -V, /g 1 '
gil(silsj)vje . J-ll->f“" X) ax
3=1 o (ra(x))?
(7,16) and
n+l -tV /s1

= 1 n+l .

n

as n increases, by re-arranging the order of 'the first two summations in (7.15)

and using Slutsky's Theorem, we find that (7.15) has the same limiting distri-

«26-
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bution as .

1
1 /)T (v,-1) [ ) 4 [ Sxg'(x)y, |
(7 7) r({'; “) 1 \_0/:1(’/“) (H’(X))a f (r+s(x)>a
Integrating the expression in brackets in (7.17), we observe that (7.17)

simplifies to
1

(7.18)  =(w/n) £ (v,-1) ( ?‘%‘7 _f “axx & ).
0

oW
Putting together (7.18) and (7.14), we conclude that (\n/n) L e 1
has the same limiting distribution as
' 1

-V, /g
(1.19) () ze YHarven (Zh- -f ),
1y (res(x))

It now involves only a simple computation to verify the mean and variance
given in (7.2), and limiting normslity follows from the standard central limit

theorem applied to (7.19) which is a sum of independent random variables.

8. A Comparison of Limiting Power,

As an application of the results of Sections L and 6, we shall compute
the limiting power of the V¥ test and the run test against sequences of al-
ternatives approaching the uniform distribution, and we shall obtain an ex-
pression for the relative efficiency of the two tests. We consider a sequence

of densities gn(x) given by
(8.1) g (x) = 1+ (c/u%) n(x)

vwhere ¢ > 0 and we have

1
(8.2) f h(x)dx = 0 ;  |u(x)] <B<w; cn(x)> -1.
0

We define K and o(v) as in (k.2).

-27-



We shall use the results of Nosther (see Fraser [6], pp. 272-273) to
compute limiting power and efficiency with respect to the sequence 3n(x).

We start by considering g(x) given by

(8.3) g(x) = 1 + ch(x)
where (8.2) is satisfied.
n+l 81
Since the VZ statistic has the same behavior as V¥ = (im) = ( 2),
i=]
we can use Theorem 4.1 to evaluate its limiting power, We find easily that

the mean of V: is

1 1
(8.4) r-'ff g (x)dx = £2( 1+c=f 12(x)(1+ch’ (x)) Yax ).
0 0

Thus, =2 in Noether's Theorem. Further, we see that if we denote the

denominator of (4.1) by oc(V:), then

(8.5) 1lm [ =g B (V%)
) n-=>o 332 ? n

1
oeo /e (o () N] = (2xi(ee1)) [ WR(x)ax
0

when v=k.
It is easily verified that the remaining conditions of Noether's Theorem

are satisfied and that the limiting power of the VZ test against the sequence
(8.1) 1s

1
(8.6) (K - (c®r/(x+1)) f n2(x)dx ).
0

To find the limiting power of the Un test, we observe that an equivalent

test 1is the one which rejects the null hypothesis whenever U* = ((2x/(x+1)) - U /o]

is large. From (6.1) we see that the expected value of U¥ under (8.3) 1s

=28-




1
81 (aet/(er1)) [ [(1-ax))/(eva(x))lex
0

1
= [2r%c2/(1+r)2) f h‘(x)(1+r+ch(x))'ldx
0

Again it 1is easily verified that me2, Denoting the denominator of (6.1)

*
by ac(l!n), we have

1
(®.8) 1m I 207 B (09)] g /o2 (o (00n®) = (oe/(re1)32) [ w(a)ax
n ® 0

vwhen v=k,
We can easily show that the remaining conditions of the theorem are true

wo that the limiting power of the U“ test is given by

1
(8.9) ok, - (2e/(ev)¥?) [ n()ax ).
(o]
It is then easily verified that the efficiency of the run test relative

to the V2 test is 1/(r+l). Thus as r, the ratio m/n, increases the relative

efficiency of the run test decreaseas to gero.

=29
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